Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0364920090340030095
Journal of Radiation Protection and Research
2009 Volume.34 No. 3 p.95 ~ p.101
A MODEL FOR PROTECTIVE BEHAVIOR AGAINST THE HARMFUL EFFECTS OF RADIATION FOR RADIOLOGICAL TECHNOLOGISTS IN MEDICAL CENTERS
Han Eun-Ok

Moon In-Ok
Abstract
Protective behavior of radiological technologists against radiation exposure is important to achieve reduction of the patient doses without compromising medical achievements. This study attempts to provide a basic model for the sophisticated intervention strategy that increases the level of the protective behavior of the technologists. The model was applied to real situations in Korea to demonstrate its utility. The results of this study are summarized as follows: First, the protective environment showed the highest relationship in the factors considered, r=0.637 (p<0.01). Secondly, the important factors were protective environment in environment characteristics, expectation for the protective behavior 0.228 (p<0.001), self-efficacy 0.142 (p<0.001), and attitude for the protective behavior 0.178 (p<0.001) in personal characteristics, and daily patient -0.112 (p<0.001) and number of the participation in the education session for the protective behavior 0.074 (p<0.05). Thirdly, the final protective behavior model by a path analysis method had direct influence on the attitude 0.171 (p<0.01) and environment 0.405 (p<0.01) for the protective behavior, self efficacy 0.122 (p<0.01), expectation for the protective behavior 0.16 (p<0.01), and self-efficacy in the specialty of projects 0.154 (p<0.01). The acceptance of the model determined by the absolute fit index (GFI), 0.969, and by the incremental fit index (CFI), 0.943, showed very significant levels. Value of /df that is a factor applied to verify the acceptance of the model was 37, which implies that the result can be accepted in the desirable range. In addition, the parsimonious fit index configured by AGFI (0.890) and TLI (0.852) was also considered as a scale that accepts the model in practical applications. In case of the establishment of some specific intervention strategies based on the protective behavior model against harmful radiation effects proposed in this study, the strategy will provide an effective way to prevent medical harmful radiation effects that could cause severe injuries to people.
KEYWORD
Harmful Effects of Radiation, Protective Behavior Model, Radiological Technologists, Medical Centers
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)